

AFRL-IF-RS-TR-2002-15
Final Technical Report
February 2002

HIGH-PERFORMANCE INTEGRATION TRANSITION
AND EXPLOITATION OF KNOWLEDGE (HITEK)

Teknowledge Federal System

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. F107

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be interpreted
as necessarily representing the official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public, including
foreign nations.

 AFRL-IF-RS-TR-2002-15 has been reviewed and is approved for publication.

APPROVED:

 CRAIG S. ANKEN
 Project Engineer

 FOR THE DIRECTOR:

 MICHAEL TALBERT, Maj., USAF, Technical Advisor
 Information Technology Division
 Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining
the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for
reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of

Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
FEBRUARY 2002

3. REPORT TYPE AND DATES COVERED
Final Jun 97 – Sep 01

4. TITLE AND SUBTITLE
HIGH-PERFORMANCE INTEGRATION TRANSITION AND EXPLOITATION OF
KNOWLEDGE (HITEK)

5. FUNDING NUMBERS
C - F30602-97-C-0145
PE - 62301E
PR - IIST
TA - 00

6. AUTHOR(S)
Adam Pease

WU - 07

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION
REPORT NUMBER

Teknowledge Federal Systems
1810 Embarcadero Road
Palo Alto California 94303

 N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

Defense Advanced Research Projects Agency
3701 North Fairfax Drive
Arlington Virginia 22203-1714

Air Force Research Laboratory/IFTD
525 Brooks Road
Rome New York 13441-4505

 AFRL-IF-RS-TR-2002-15

11. SUPPLEMENTARY NOTES

Air Force Research Laboratory Project Engineer: Craig S. Anken/IFTD/(315) 330-2074

12a. DISTRIBUTION / AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
This effort focused on the development and integration of large knowledge bases and
knowledge based tools. The project significantly advanced the state of the art in ontology
and knowledge base development. Of particular scientific interest was a set of formal
experiments that were conducted and described in technical reports and academic publications
that quantified the value of knowledge base technology. The project also laid the
groundwork for further efforts in ontology development and standardization. The Teknowledge
integration approach was integration of components using a single large ontology based on
Cyc. A significant result was the development of a version of Cyc for government
distribution, which contained an Integrated Knowledge Base (IKB) and Integrated Development
Environment (IDE). This software built on Cyc and included the ontology content developed
during the HPKB project by our team. The HPKB project was structured to have several
Challenge Problems that motivated and evaluate research progress. The Crisis Management
Challenge Problem was focused on knowledge-based inference and the domain was reasoning
about international crisis situations. The Battlespace Challenge Problem went through
several iterations but wound up focusing on planning for battlefield workarounds and
critiquing Army Courses of Action (COAs). The latter technology focus was on an integration
of knowledge based sketching, restricted English to logic translation, problem solving, and
knowledge-based inference.

14. SUBJECT TERMS
Knowledge Base Technology, Artificial Intelligence, Information

15. NUMBER OF PAGES
 37

Technology, Challenge Problem, Evaluation 16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18298-102

TABLE OF CONTENTS

INTRODUCTION .. 1

ACCOMPLISHMENTS IN 1997 ... 1

ACCOMPLISHMENTS IN 1998 ... 2

ACCOMPLISHMENTS IN 1999 ... 3

PRACTICAL KNOWLEDGE REPRESENTATION AND THE DARPA HIGH
PERFORMANCE KNOWLEDGE BASES PROJECT ... 8

DOES PRIOR KNOWLEDGE FACILITATE THE DEVELOPMENT OF KNOWLEDGE-
BASED SYSTEMS?... 16

FROM VISUAL TO LOGICAL REPRESENTATION: A GIS-BASED SKETCHING TOOL
FOR REASONING ABOUT PLANS .. 22

USING LARGE ONTOLOGIES TO ENABLE SEMANTIC INTEROPERABILITY OF
PROBLEM SOLVERS... 28

REFERENCES ... 33

 i

LIST OF FIGURES
FIGURE 1 - CORRECTNESS OF COA CRITIQUING ANSWERS BY TOPIC AND NUMBER OF ANSWERS PER

TEAM ... 4
FIGURE 2 - KNOWLEDGE BASE REUSE METRICS... 5
FIGURE 3 - KNOWLEDGE BASE SIZE METRICS... 6
FIGURE 4 - YEAR 1 CMCP PERFORMANCE .. 7
FIGURE 5 - YEAR 2 CMCP PERFORMANCE .. 7

 ii

Introduction
The Teknowledge HPKB team integration effort resulted in the development and integration of large knowledge
bases and knowledge based tools that were successfully transitioned to several DoD customers. The project
significantly advanced the state of the art in ontology and knowledge base development resulting in a number of
publications (Pease et al, 2001, 2000) (Cohen et al, 1998). Of particular scientific interest was a set of formal
experiments that were conducted and described in technical reports and academic publications that quantified the
value of knowledge base technology (Cohen et al, 1999). The project also laid the groundwork for further efforts in
ontology development and standardization (Pease & Niles, 2002).
The Teknowledge integration approach was integration of components using a single large ontology based on Cyc.
A significant result was the development of a version of Cyc for government distribution, which contained an
Integrated Knowledge Base (IKB) and Integrated Development Environment (IDE). This software built on Cyc and
included the ontology content developed during the HPKB project by our team.
The HPKB project was structured to have several Challenge Problems that motivated and evaluated research
progress. The Crisis Management Challenge Problem was focused on knowledge-based inference and the domain
was reasoning about international crisis situations. The Battlespace Challenge Problem went through several
iterations but wound up focusing on planning for battlefield workarounds and critiquing Army Courses of Action
(COAs). The latter technology focus was on an integration of knowledge based sketching, restricted English to
logic translation, problem solving, and knowledge-based inference.
Key accomplishments of the integration team with respect to the challenge problems include:

• Delivery of a knowledge based reasoning system for the Crisis Management Challenge problem that
consistently out-performed that of the competing integration team (see Figures 4 and 5 below)

• Delivery of an integrated battlefield plan critiquing system that included core technology for inference,
plan sketching, and a large ontology created by our team. Our critiquing system answered all the challenge
problem questions that the technology developers in the program did not want to address (which was
roughly half the questions posed). See Figure 1 below.

A permanent record of the HPKB project and its results was created at http://projects.teknowledge.com/HPKB. To
date there have been over a million unique accesses of this site which forms a significant resource for the AI
community.
One programmatic conclusion that we reached during the course of the project was that the most successful
integrations occur when the integration team also plays a role as technology developer, implementing research ideas
as new components, as well as in providing “glue” for existing components.
In this report, we provide a narrative of accomplishments and a set of papers that describe the technical detail of
some of those accomplishments.
Accomplishments in 1997

• Created Java interfaces for Cyc and NWU's SME (analogy reasoner). These interfaces were delivered very
early in the course of HPKB and allowed us to make rapid progress later in interfacing systems.

• Early in the project we created the HPKB web site as a means for coordination and for recording progress.
We posted kickoff meeting briefings to the web site at and worked with HPKB participants to define their
integration deliverables and posted those deliverables to the HPKB web site. By the end of the first year of
the project there were over 900 web pages on the site.

• We prepared a first version of an API document for our knowledge based system, a first version of the
MELD language specification document that described the formal language that the system uses, and a first
executable implementations including an Integrated Knowledge Base (IKB) and Integrated Development
Environment (IDE).

• We reached agreement in the program to use a single upper ontology based on the Cyc upper ontology
with additional contributions from Stanford and others.

• We gave several training courses on the Cyc system and ontology which were attended by most program
participants

• We implemented an initial prototype GUI for the Crisis Management Challenge Problem (CMCP). This
product allows a user to fill in information relevant to each phase CMCP problem solving. This system
was presented to the CM SMEs and used to clarify information during initial Knowledge Acquisition (KA)
sessions.

 1

http://projects.teknowledge.com/HPKB

• We formalized and answered the Crisis Management Challenge Problem (CMCP) questions. Over half of
the questions were answered successfully.

• We created a Network Flow Problem Solver (NFPS), based on (Ford & Fulkerson, 1956), integrated it
with Cyc and developed a graphical front end. The interface allows a user to place transportation nodes on
a map, define the traffic capacities between the nodes, and activate NFPS to find the bottlenecks in the
system. This supported the Battlespace challenge problems. The integration with Cyc allowed us to reason
with the output of the mathematical algorithm and make recommendations or answer questions about the
traffic and trafficability situation on a battlefield.

• We integrated dynamic recognizers, developed by UMass, into our Situation Assessment problem solver.
The integrated system reads data from a track file supplied by Alphatech, locates features in the data and
asserts factual statements about the presence of those features to the ArcView GIS. This GIS-based
graphical user interface supports visualization of battlefield events. It also includes some simple filtering
rules that allow the large volume of data to be pared down to a reasonable size. Those features can then be
sent on to Cyc for further knowledge based processing.

• We developed a Crisis Management Assistant based on a workflow specification created by AIAI. We also
performed an initial integration with NWU's SME product.
Accomplishments in 1998

• We reviewed and assisted IET with their development of parameterized forms that can be used for
specifying knowledge base queries and developed a GUI for entering those parameterized forms.

• We delivered a MELD-to-KIF translator
• We developed an ontology for battlefield workarounds
• Designed Workarounds problem solver, created specs for a planner and wrote axioms that the planner uses

to solve the problem. Initial efforts included working with Alphatech to define the problem and working
with MRJ personnel to define informally the rules that a workarounds engineer follows. Next, we
developed the formal axioms in Cyc with support from AIAI. In addition, we worked with AIAI to
integrate their workarounds problem solver with Cyc

• We created a translator which converts from the Alphatech Workaround input forms into CycL/MELD
forms. This translator had the added benefit of discovering anomalies in the inputs, which were then
communicated to Alphatech.

• We developed an interface between Java and the ArcView GIS in order to support the Workarounds
Challenge problem.

• We delivered the full ontology required for stating the CMCP Parameterized Questions (PQs), instantiating
them, and stating the answers to the instantiated PQ's.

• We created a data dictionary and then formalizations in logic of GIS data supplied by Alphatech. We then
integrated this content with the Cyc KB.

• We began work on quantifying knowledge base size and rates of content development. (See figures 2 and
3 below).

• We added formal ontology content derived from EIA (Energy Dept) web pages, and CIA World Factbook.
We developed new formal ontology content for preconditions and hypothesized actions and their
consequences in support of the Workarounds Challenge Problem

• We integrated the NWU trafficability engine. This consisted of creating Cyc constants and axioms to
allow communication of information, implementing a lightweight subset of the KQML protocol that NWU
uses, and creating a GUI front-end.

• Our CMCP results were very good; they were high both in an absolute sense (generally in the 50-90%
range) and relatively - surpassing the SAIC team on each and every one of the seven batches (see figure 4
below).

• Delivered a translator that converts from a vehicle movement database developed by Alphatech to CycL.
The database, called FIRE&ISE, encodes all the input and ouput information for both the Workarounds
and Movement Analysis challenge problems. By creating a product which could stand between the F&I
database and the knowledge tools in HPKB, we avoided haggling over Alphatech’s representation and
allow the community to make progress on solving the challenge problem

• Completed integration of products from SRI, Stanford SMI, MIT, UMass. They were integrated through a
monitoring system that filtered the input data according to user specified conditions and sent the filtered

 2

data to the four systems. The monitoring systems then collected the results, converted them to Cyc and
also sent the output to a visualization system built on the ArcView GIS

• Integrated the NWU trafficability engine. This consisted of creating Cyc constants and axioms to allow
communication of information, implementing a lightweight subset of the KQML protocol that NWU uses
and creating a GUI front-end. The software reasons about travel capabilities and travel times for various
vehicles over terrain specified in a GIS.

• We delivered an initial ontology for the Battlespace COA problem. It includes over 100 constants and
roughly five axioms for each constant and covers all the terms that Jim Donlon and Alphatech highlighted
as being the most important in representing COA symbols. It includes a: planning ontology, military units
ontology, high level military task ontology, specific military tasks, militarily significant areas, military
purposes, task interaction relations, information sources ontology, and a Universal Transverse Mercator
ontology. Successive versions of the ontology were posted on the HPKB web site in a version
management system that allowed developers to track changes to the ontology.
Accomplishments in 1999

• We delivered a prototype COA drawing tool built on top of the ArcView GIS. This tool allows a user to
place military unit symbols on a map and to draw phase lines and lines of responsibility. The information
can be saved or loaded. A file interface format was also specified so that other tools can work with this
information. The drawing tool generates formal logic statements that are equivalent to the visual content of
the sketch.

• We worked with Textwise to integrate their text processing and CycL generation system with Cyc. This
resulted in a system that took individual English sentences, converted them to Textwise's CRC
representation and then translated a portion of these to CycL statements.

• We participated in the COA Crtiquing CP evaluation, answering as many questions types as all the other
participants combined. In addition, we generated the test problem input for ISI, GMU, and NWU in the
COA ontology from a graphical representation and structured English test input. (see figure 1)

• We integrated of the NWU geographic reasoner with Cyc and used it in answering several of the CMCP
test questions.

• We delivered a workarounds planning system that coupled plan generation rules to a faster planning
algorithm than our initial Cyc-based approach. Several of the test problems can now be solved in a quarter
of a second as opposed to several minutes with the old planner.

 3

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Su
ita

bi
lit

y

Fe
as

ib
ili

ty

A
cc

ep
ta

bi
lit

y

C
om

pl
et

en
es

s

A
rr

ay
 o

f F
or

ce
s

Sc
he

m
e

of
 M

an
eu

ve
r

C
om

m
an

d/
C

on
tr

ol

St
re

ng
th

s/
W

ea
kn

es
se

s

D
ec

is
iv

e
Po

in
t

En
ab

lin
g

Q
ue

st
io

ns

20

225

8

GMU:

ISI (Expect):

ISI (Loom):

Tek/Cyc:

25

12 30

17

8

8

10 7 14 42

Figure 1 - Correctness of COA Critiquing Answers by topic and number of answers per
team

 4

SQp
1-Dec-97

TQCp
18-Jun-98

TQAp
2-Jun-98

Term Reuse
Year 1 Evaluations

New

Reused
General

(Upper Ontology)

Reused
Specific

SQp
1-Dec-97

TQCp
18-Jun-98

TQAp
2-Jun-98

Assertion Reuse
Year 1 EvaluationsNew

Reused

Figure 2 - Knowledge Base Reuse metrics

 5

Metrics

constants before
hpkb : 34803

plus constants
during hpkb : 16058

assertions before
hpkb : 373720

plus assertions
during hpkb : 201012

rules before
hpkb : 11150

123912 of those assertions
are “domain independent”

plus rules
during
hpkb : 9756

Contents of Cyc
prior to HPKB.
Entered over 12
years.

Contents developed
during HPKB.
Entered over 2
years.

Figure 3 - Knowledge Base size metrics

 6

 7

Official Questions - Basic Scores Only

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

SQ' TQA TQA-Auto TQA' TQB TQB-Auto TQC TQC-Auto TQC' TQD TQD-Auto

A
ve

ra
ge

 S
co

re TFS

SAIC

Figure 4 - Year 1 CMCP Performance

Bas ic Sc ore s

0

0.5

1

1.5

2

2.5

3

TQEbas eline TQEmidpoint TQEfinal TQF

Batch

B
as

ic
 W

ei
gh

te
d,

 G
at

ed
, A

ve
ra

ge
 S

co
re

s

SAIC

TFS

Figure 5 - Year 2 CMCP Performance

Practical Knowledge Representation and the DARPA High
Performance Knowledge Bases Project

Adam Pease
Teknowledge

1810 Embarcadero
Palo Alto, CA 94303

USA
apease@teknowledge.com

Vinay Chaudhri
SRI International

333 Ravenswood Ave
Menlo Park, CA 94025

USA
chaudhri@ai.sri.com

Fritz Lehmann
Cycorp

3721 Executive Cntr Dr
Austin, TX 78731

USA
fritz@cyc.com

Adam Farquhar *
Schlumberger

8311 North FM 620 Road,
Austin TX 78726

USA
afarquhar@slb.com

Abstract

We address the experiences of the DARPA
High Performance Knowledge Bases (HPKB)
(Cohen et al., 1998) project in practical
knowledge representation. The purpose of the
HPKB project was to develop new techniques
for rapid development of knowledge bases.
The goal of this paper is to describe several
technical issues that arose in creation of
practical KB content.

HPKB PROJECT

EXPERIMENTS
The project had two main objectives: first, to advance
the science of Artificial Intelligence Knowledge
Representation and Knowledge Base content creation,
and second, to apply these technologies to create
applications with utility to the Department of Defense.
The applications were specified as two Challenge
Problems (CPs). The first was the Crisis Management
CP, an effort to develop an automated question
answering system that met the needs of analysts who
must be informed about emerging world crises. The
second was the Battlespace Challenge Problem. This
effort covered two knowledge-based systems. One
reasoned about battlefield engineering tasks such as
workaround computation; the other critiqued battle
plans. This paper addresses issues primarily from the
experiences of the Crisis Management CP.

PROJECT ORGANIZATION
Two teams worked on these challenge problems. In the
Crisis Management CP, one team used Cyc (Lenat,
1995) and its MELD (Cycorp, 1997) representation
language. Another used KIF (Genesereth & Fikes,
1992) and the SNARK (Stickel et al., 1994) and ATP
theorem provers.

HPKB was a very large project and many aspects are
not even mentioned in this paper. The interested reader
should refer to the HPKB web site (HPKB Web, 1999)
and publications list (HPKB Pubs, 1999).

TRADEOFFS IN THEORY CREATION

There is a cost in creating reusable representations. It
is more costly to create representations that will be
reusable across multiple domains than it is to create a
representation that is suitable for just one application.

We believe there is a need for a more formal
development process that is built on some of the best
practices from the software engineering community. It
is always easier to create specific and limited content as
opposed to crafting a general domain theory. The
challenge is to build time into the development process
for planning and systems analysis, design,
implementation, testing, and rework and
generalization. Much like the spiral development
model advocated by Booch (Booch, 1994) and others, a
good development process iterates through these stages
several times during a development process. One
possible instantiation of this process would be as
follows:

DEVELOPMENT PROCESS
Planning and systems analysis. It is essential to
determine the need that the knowledge must fulfill.
Will it be used for inference? To define a semantics for
natural language interpretation? As an interlingua for
cooperating agents or software modules? Each of these

* The author performed this work while a member
of the Knowledge Systems Laboratory, Stanford
University

 8

mailto:apease@teknowledge.com
mailto:chaudhri@ai.sri.com
mailto:fritz@cyc.com
mailto:afarquhar@slb.com

applications will entail a different emphasis on the
richness of the formalization.

Also considered should be the performance
requirements of the implementation. How fast should
the resulting inference be? Will the knowledge base
need to be augmented with a significant amount of
instance data? Is logical completeness a necessity?
Answering these questions will help to determine how
expressive the knowledge representation can be, which
will in turn partially determine the inference engine that
needs to be employed.

We should note that in the HPKB project, a great deal
of the systems analysis phase was done for the
knowledge base developers by providing them with a
Challenge Problem (Schrag, 1999:2) that specified and
detailed the scope and purpose of the experiments that
were to come. A great deal of informally specified
knowledge was also provided.

Design. One way to design a knowledge base is
initially to specify it informally. The engineer creates
English examples illustrating sample reasoning chains.
Glossaries with English definitions are created. It can
also be useful to create a taxonomy as a skeleton on
which the theory can be developed.

Implementation. As in software development, if the
two previous phases are done properly, the
implementation phase can proceed quickly. It is
important that all members of the development team
participate in the first two phases. Also helpful is a
formal review process led by a chief knowledge
architect.

Knowledge architects, software architects, and building
architects all have similar roles. While they do not
control every detail of a project, they set the overall
design, standards, and aesthetics. A knowledge
architect provides guidance to his team about how to
meet project requirements, find a balance in tradeoffs
between development speed and implementation
generality, maintain consistent approaches across
diverse team members, and set standards for reviews
and documentation. A good architect manages by
objectives and standards, which result in an
implementation that speaks with one voice while
allowing participants the freedom to innovate.

Testing. While this phase is obvious for any
knowledge base that is to be used in a computational
system, performing systematic testing is often ignored.
If the knowledge base has been developed in a modular
manner, an equivalent to unit testing can be performed
on each small theory. Unit testing allows for testing of
greater coverage than final integration testing.

Rework and Generalization. This phase is the most
often ignored simply because of the dynamics of most
research projects. Once the practical objectives of the
sponsors have been achieved, little time or money

remains in the project to correct shortcuts that may
have been made. However, this phase is possibly the
most important if incremental scientific results are to be
achieved.

Any large scale project will necessarily go through the
above phases several times. A good knowledge
engineering process has many similarities to a good
software engineering process.

THEORY REUSE

Both teams reused the HPKB upper level (HPKB-UL)
ontology, derived from Cyc, during the project. The
representation for the temporal knowledge available in
the HPKB upper ontology was very well designed.
From the HPKB-UL, we also used representation for
communicative actions, slots on actions (agent roles),
and the primitives for representing paths. For one
team, reusing these theories required translating the
representation, extracting portions of the input ontology
for use, and doing limited reformulation. There was
also the need to further extend the library of the
representation primitives for causality, scales, actions,
processes, and qualitative influences.

The Cyc-based team had access to the entire Cyc
knowledge base. In addition to areas mentioned for the
upper level, there are good theories for concrete
physical domains of all sorts. Theories of belief, goals,
trust, and the expression of causality in
nondeterministic human events are essential and less
well developed.

HPKB had a good record of reusing terms and basic
statements about terms. Developers gained a great deal
of value from inheriting a large set of precise
distinctions about things in the world, such as the
differences among a goal, a plan, and a desire.
However, comparatively little reuse of general rules
was evident. This can be explained in several ways:

• It's hard to write truly general rules.

• Insufficient effort has been placed into writing
general rules because of the pressures of day-to-
day results.

• Practicalities of inference are such that a long
chain of reasoning involving general rules doesn't
work in a reasonable amount of time. One has to
"short-circuit" the deep reasoning with special-
purpose rules that make the inference tractable.

As an example of reuse, consider the following
inference task performed by our system:

What risks can Iran expect in sponsoring a terrorist
attack in Saudi Arabia?

To answer questions of this type, one team developed a
simple cause-effect model. All the predicates below,

 9

including cause-event-event, beneficiary, and
maleficiary were reused from the HPKB-UL. Even
though we capture only direct effects of an action, this
simple model was effective in practice. This example
illustrates the reuse of notions of causality that were
already conceptualized in the HPKB-UL. The
following is an example application of these
representation primitives.

(forall ((?terrorist-attack
 terrorist-attack)
 (?agent agent))
(=>
 (performed-by ?terrorist-attack ?agent)
 (exists
 ((?punishment punishment))
 (and
 (causes-event-event
 ?terrorist-attack
 ?punishment)
 (maleficiary ?punishment ?agent)
 (object-acted-on
 ?punishment ?agent)))))

(forall ((?action action)
 (?action1 action1))
 (implies
 (and
 (causes-event-event ?action ?action1)
 (performed-by ?action ?agent)
 (beneficiary ?action1 ?agent))
 (benefit-of-action
 ?action ?action1 ?agent)))

A detailed description of technical problems
encountered in reuse is available in (Cohen et al., 1999)
(Chaudhri et al., 2000). Even though we reused
representations for actions and casuality from HPKB-
UL, significant additional representation work needed
to be done. This suggests that a representation library
for actions, causality, and qualitative influences needs
to be extended. The theoretical KR community is
invited to study the HPKB-UL and propose
representational modules to be included in it.

PRACTICAL REPRESENTATIONAL ISSUES

There was a lack of principles for designing
taxonomies. As a result, creating and maintaining a
taxonomy of primitive concepts became increasingly
difficult as its size grew. Conventional description
logic techniques do not help in creating taxonomies that
contain a large number of primitive concepts. Better
principles for taxonomy design are needed.

There was also the need to "hand-compile" deep
reasoning out into special-purpose theories that had
tractable inference chains.

TAXONOMY
Like many other KBs, the class-subclass taxonomy was
an overarching organizing principle in our HPKB KB.

A class-subclass taxonomy serves as an indexing aid to
find knowledge and add new knowledge, and to serve
as a method to efficiently write axioms by using
inheritance.

While designing the taxonomies for the HPKB project,
we encountered the following problems:

1. As the taxonomy got bigger, it became increasingly
difficult to add new concepts to it. As a result, there
were concepts that had incorrect positions in the
taxonomy:

• Some concepts had missing links. A class has a
missing super-class link if it is a subclass of
another class B, but the subclass relationship is not
declared.

• Some concepts had wrong links. A class has a
wrong link in a taxonomy if it is a direct subclass
of B, but the subclass relationship does not hold
true.

2. We were encountering concepts that were being
created by a cross-product of two sets of concepts, for
example:

{International, transnational, subnational,
national} x {organization, agent}
{Support, oppose} x {attack, terrorist-
attack, chemical-attack} {Humanitarian,
political, military, diplomatic} x
{Organization, Action}

3. Some concepts had a very large number of

subclasses. In some cases, this was due to
orthogonal ways to categorize a concept. As a
result, such categorizations were not mutually
disjoint. Large fan-outs made it cumbersome to
navigate through the taxonomy. As an example,
consider the following snippet from the taxonomy
representing organizations.

Figure 1. A portion of a taxonomy
representing organizations showing

orthogonal categorizations

While the categorization of commercial organization
and unincorporated organization is based on the legal
status of an organization, the categorization of
international organization and subnational organization
is based on extent of operations. Mixing such

 10

 (performedBy ?X ?Y) orthogonal categorizations adds to the complexity of
the taxonomy. (members ?X USMilitaryOrganization))

in which the action has been expanded to describe an
action type and detail about the performer of the action.
We can further decompose the action by describing it
as an event that has the purpose of maintaining a
particular state.

4. If two classes are disjoint, the disjointness
relationship must be declared.

5. There should be no redundant classes representing
identical concepts.

(and A taxonomy is well designed if it is free from all the
problems mentioned above. Ensuring these properties
in a small taxonomy is easy even if it is done manually.
However, as the taxonomy size grows, making
taxonomy well structured manually is very time
consuming. These problems are indicative of a poor
design methodology for developing taxonomies. We
argue below that these problems go away if one takes a
more principled approach to developing these
taxonomies and supports additional constructs to
structure the taxonomies.

 (toMaintain ?Y PeaceAccord)
 (instance-of ?Y MilitaryOperation)
 (performedBy ?X ?Y)
 (members ?X USMilitaryOrganization))

 (Schrag, 1999:1) has proposed the following
compositionality hypothesis: noncompositional
representations are inexpensive to build but they are
brittle with respect to weak problem generalizations
and must be re-engineered (for example, into
compositional representations) or replaced.

According to the compositionality hypothesis, the first
representation is inferior to the later versions.
However, although many knowledge engineers would
have a strong intuition that the later representations are
superior, there is no strong empirical basis for the
proposed criticism of the first representation. One
approach that would admit the first representation as
acceptable would be to add additional terms to the KB
and give a more complete definition to it. Thus, even if
the first representation is noncompositional, it is
amenable to generalization if an application requires it.

If every concept has necessary and sufficient
definitions, one can use a classifier to help alleviate
Problem 1. In practice, we found that too many
concepts were primitive and did not have necessary and
sufficient definitions. Therefore, we cannot use a
classifier. Problem 1 stems from the fact that the
taxonomy itself is getting too complex. For example, a
concept is linked or needs to be linked to too many
different places. As a result, defining a new primitive
concept involves manually encoding its relationship to
numerous other primitive concepts -- a process that is
error prone. One would hope that the process of
organizing such concepts into a taxonomy would be
considerably simpler than doing the same thing for the
original concepts.

The relative comparison between the two
representations is unlikely to have a context-
independent answer. If in the current application we
never need to represent or reason with conduct,
mission, or peacekeeping, other than talking about
"conduct peacekeeping mission", the less expressive
representation is adequate. One can certainly argue that
the first representation is less reusable. However, that
depends on the next application. If we use the first
representation, and the next application requires us to
represent or reason with conduct, mission, or
peacekeeping, it is possible to add them to the KB and
use them to define UsConductOfPeacekeeping. This
may be studied more formally with an analytical model
as follows.

We need principles for taxonomy design that can
enable us to economically create and maintain large
taxonomies of primitive concepts.

COMPOSABLE REPRESENTATIONS
We believe that representations are more reusable if
they are compositionally constructed. A representation
is compositional if it represents each individual concept
in the domain of discourse, and the representation of
complex concepts is obtained by composing
representations of individual concepts. To illustrate
this, consider the representation of the following:

Suppose we design two representations, one of which
uses n1 terms and the other uses n2 terms. Suppose
cost/term is c and is constant in both cases. The cost for
building a KB for the two cases is c*n1and c*n2,
respectively.

The USA conducts a peacekeeping mission.
In this example, we can use several different
representations. One degenerate representation might
be If speeding up KB construction time for just one

application is the objective, a compositional
representation can be bad! However, if we also care
about reuse, that may not be necessarily so. Does
compositionality enable reuse? We cannot find out
until we run replicated trials.

UsConductOfPeacekeeping
This representation compiles all the semantic features
of the English statement into a symbol. A more
reasonable representation might be

(and
 (instance-of ?Y PeacekeepingOperation)

 11

Suppose we reuse the KB for a new application. This
new application requires the same knowledge fragment
that we have already coded but requires a different
compositionality, and we end up defining n3 new terms
for the first representation and n4 new terms for the
second representation. It is possible that either of n3 or
n4 is zero. The cost for the new application is c*n3 and
c*n4, respectively.

along with defining a set of actions as subclasses of
"opening markets" actions.

The goals of a project can strongly bias a knowledge
engineer to the second representation. If a research
team is scored, or a development team is paid on the
basis of "correct" answers, compositionality and deep
reasoning will be sacrificed.

The objective should be to minimize c*(n1+n3) or
c*(n2+n4). The model can be generalized to N
applications. The parameter c can be viewed as time to
construct a KB, and thus linked directly to the program
goal of speeding up the KB construction time. Further,
this model allows us to do the following:

METRICS
For any practical KB content creation work, there is a
need to state crisply the competence level of a KB, and
to make claims about increasing competence as the
time goes along. Even though we know that there is an
intuitive relationship between the size of a KB and its
competence, there is no foolproof way functionally to
relate the size to competence. As an approximate
measure, we used the axiom count in a KB as one
measure of competence.

a) Measure whether it is really worth decomposing a
representation

b) Amortize the higher cost of decomposition over a
number of applications

c) Make explicit the relationship between reuse and
compositionality

An early challenge during the project was to define
what counts as an axiom. Given that there is no
universal way to count axioms, and that the axiom
counts are sensitive to the modeling style and the
language, we developed the following scheme for
categorization of axioms in a KB.

Exploring this tradeoff is open for future work.

"COMPILED" REPRESENTATIONS
• Constants are any names in the KB, whether an

individual, class, relation, function, or a KB
module

One of the HPKB Challenge Problems dealt with
reasoning about economic actions. One might encode
the following chain:

There exist economic actions • Structural statements are ground statements
using any of (Cyc term/Ontolingua term)
#$isa/instance-of, #$genls/subclass-of,
#$genlPreds/subrelation-of,
#$disjointWith/disjoint,
#$partitionedInto/disjoint-decomposition,
#$thePartition/partition, #$genlMt,
#$argXIsa/nth-domain (where X is a digit),
#$argXgenls/nth-domain-subclass-of (where X
is a digit), #$arity/function-arity/relation-
arity, #$resultIsa/range,
#$resultGenls/range-subclass-of

which open markets -
 opening markets encourages
 exports -
 increasing exports improves
 a country's trade balance -
 positive trade balance
 improves economic health -
 all countries are
 interested in
 economic health

However, it may be that in practice, because of the
complexity and compositionality of each of the
encoded statements, and the depth of the inference,
such a reasoning chain does not terminate in a
reasonable amount of time. While an inference of
depth five may not seem very taxing, consider the fact
that this set of rules exists in a very large KB along
with tens of thousands of others. The task of matching
these particular rules and determining that huge
numbers of others are irrelevant is time consuming.

• Ground facts are any statement without a variable.

• Implications include any non-ground statement
that has an #$implies (note that a ground
statement that contains an #$implies is counted as
a ground statement)

• Non-ground, non-implications are statements that
contain variables but not an implication. The result is that to create a reasoning system that

reaches a conclusion in a short amount of time, one
might have to encode This categorization is imperfect, but it is easy to

implement and was applicable to both of the crisis
management systems developed during the HPKB
project.

There is a set of actions
which open markets -
 opening markets contributes
 to economic health - The structural statements have an intuitive status in

most systems: for SNARK the structural information is
sort information, for Cyc the structural information is

 all countries are interested
 in economic health

 12

 called definitional, and for description logic systems the
structural relations are usually called concept
constructors. The statements with implications are
rules. Ground facts often represent knowledge that can
be found in an almanac or database.

(forall ((?x action)
 (?y action)
 (?z country))
 (=>

A weakness of this categorization is that it counts many
statements as ground statements even though they are
not actually ground. For example, the statements
involving template-slot-value, and
#$relationAllExists are counted as ground. Further
refinement to this categorization is left open for future
work.

 (and
 (may-cause ?x ?y)
 (performed-by ?x ?z)
 (maleficiary ?y ?z))
 (risk-of-action
 ?x ?z ?y)))

(forall (?x ?y ?z)
 (=>
 (and
 (instance-of ?x action) The axiom categorization scheme gave us an empirical

tool to compare content across the two systems
developed in the project. We would welcome proposals
from the theoretical KR community, detailing more
systematic ways to measure the competence of a large
KB.

 (instance-of ?y action)
 (instance-of ?z country)
 (may-cause ?x ?y)
 (performed-by ?x ?z)
 (maleficiary ?y ?z))
 (risk-of-action ?x ?z ?y)))

(forall (?x ?y ?z)
 (=>
 (and STANDARDS (action ?x)
 (action ?y) Having a standard syntax is a necessity, but standard

syntax plays a relatively small role in addressing the
practical challenges facing the knowledge engineer.
There is a need to move from an emphasis on standards
of syntax, or on defining a precise semantics for tiny
theories, to standard large theories and style guides for
axiom writing.

 (country ?z)
 (may-cause ?x ?y)
 (performed-by ?x ?z)
 (maleficiary ?y ?z))
 (risk-of-action ?x ?z ?y))

One additional factor might be that may-cause and risk-
of-action could be defined as referring to types of
actions rather than instances in different knowledge
bases.

For example, the subclass relationship can be either
stated as

1. (subclass-of A B), or as These three forms are equivalent and follow the ANSI
KIF standard. In spite of the standard, people come up
with sufficiently different ways to write axioms to
make the knowledge exchange difficult. Therefore, the
standards must be accompanied by a style guide before
they can enable knowledge exchange. In the above
example, the style guide could require that the type
information for axioms should always be stated in the
quantifier specification.

2. (=> (A ?x) (B ?x))

Both of these forms are ANSI KIF. The first form uses
subclass-of as a relation to compactly encode
information that could also be written as in Form 2.
The first form also has the advantage that a reasoner
supporting taxonomic inference can take advantage of
this form, which can be quite difficult for the second
form.

As another example, consider three commonly used
ways to specify the type information of variables in an
axiom: (1) using ANSI KIF-style typed quantifiers, (2)
using instance-of relations, or (3) using the class as a
relation. Here is an example axiom encoded in these
three forms:

USING A VERY EXPRESSIVE
REPRESENTATION

Expressive representations enable a degree of
generality and reuse not possible with more restricted
representations. Because of interactions among
axioms, the inference time can become very high. The
most general and reusable theory is not useful if
inference on those theories is not tractable for your
inference engine. Some ways of addressing this
problem are by partitioning the KB into modules to
isolate the interactions among axioms, and by

 13

compiling knowledge by hand into more efficient
representations.

One team had the goal ot keeping the inference time for
answering a question to less than 2 minutes. If all the
axioms were loaded at the same search space, it was not
possible to meet this requirement. Therefore, we
modularized the KB to limit the interactions among
axioms and achieve the desired response time. This
problem would have been less critical had we limited
the representation to horn clauses.

KB modularization means dividing the content of a KB
into conceptual partitions that serve the basis for KB
development and inference. We experimented with two
ways to modularize a KB: subject based and task based.
A subject-based modularization organizes a KB by
subject area and can enable easier sharing and
development of KB content. A subject area can be
assigned to a knowledge engineer to direct its
development. While reusing a KB, one can select a KB
in the subject area of interest. A task-based
modularization organizes a KB by the rules and
individuals that are relevant to a task, thus significantly
reducing the search space. The class, function, and
relation definitions do not affect the search space, and
therefore need not be modularized to speed up
inference.

Modularization of a KB based on the subject-based
criteria and the task-based criteria can be different and
can coexist. We used both subject-based and task-based
modularization during the project. For example, three
major subject areas covered in our KB are actions,
agents, and interests. We also created task-specific
partitions in the KB based on specific parameterized
questions (PQs). For example, for answering questions
about interaction between interests and actions, there
was no need for knowledge about specific terrorist
groups in the KB that were kept in a separate partition.
The approach to modularization described here was
clearly engineering driven, and better principles to
arrive at the modularization are needed. Techniques to
develop modules for a KB in a way that isolates
independent reasoning chains are clearly of special
importance.

ISSUES IMPEDING PROGRESS

Inference engine performance is one crucial technical
issue. While it is not easy to develop inference
modules for very expressive features, it is incredibly
hard to get those modules to perform well.

Despite the program's name, execution speed was not
an issue under investigation in HPKB. Many
researchers have studied algorithms, speed, and
complexity. HPKB was extremely important because it
focused on content. Much research on inference

performance has not been undertaken in the context of
practical reasoning on large knowledge bases. The
challenge now is to focus on merging research on
creating and reasoning with large knowledge bases with
research on inference performance.

The most important nontechnical issue is research
parochialism. The need to "own" a language, ontology,
theory, or protocol is very powerful, whether in terms
of building a research identity or a commercial base.
However, this fragmentation is hampering progress.

Allen’s seminal work (Allen, 1984) (Allen, 1994) on
representing temporal knowledge is a good example of
the kind of results that we need, and it is also well
referenced and adopted in the applied AI community.
Allen’s work identified the primitives necessary to
represent a sufficiently large class of temporal
information and proposed inference procedures. If we
could do the same for other domains such as actions,
space, and causality, etc, it would greatly speed the
practical KB construction. It is also the case that
careful theoretical work has been done in these areas
but may not be well known or adopted in the applied AI
community. This work includes (Cohn et al., 1997),
(Giunchiglia & Lifschitz, 1998), (Giunchiglia &
Lifschitz, 1999), (Lifschitz, 1987), (McCain & Turner,
1997).

The KR community is still theoretically focused. Few
people are interested in working on creating KB
content. The time is right for a new focus on practical
KB content creation.

Acknowledgments
We wish to acknowledge our DARPA sponsor, Murray
Burke, for funding and guiding this work. We also
wish to acknowledge the essential contribution of
Robert Schrag at IET, who specified the Challenge
Problem that made this research possible. Cleo
Condoravdi provided a very helpful review of the
paper.
References
Allen, J. (1984). "Towards a General Theory

of Action and Time", Artificial
Intelligence 23, pp 123-154.

Allen, James and George Ferguson (1994).
"Actions and Events in Interval Temporal
Logic", Journal of Logic and Computation
4, 531-579.

Booch, G. (1994). Object-Oriented Analysis
and Design With Applications, Addison-
Wesley

Chaudhri, V., J. Lowrance, J. Thomere, M.
Stickel, and R. Waldinger (2000).

 14

Lenat, D., 1995, "Cyc: A Large-Scale
Investment in Knowledge Infrastructure".
Communications of the ACM 38, no. 11,
November.

Ontology Construction Toolkit. Artificial
Intelligence Center, Technical Report.

Cohen, P, V. Chaudhri, A. Pease, and R.
Schrag (1999). "Does Prior Knowledge
Facilitate the Development of Knowledge
Based Systems", Proceedings of AAAI-99.

Lifschitz, V. (1987). "Formal Theories of
Action". The Frame Problem in Artificial
Intelligence: Proceedings of the 1987
Workshop. Los Altos, CA: Morgan
Kaufmann Publishers.

Cohen, P., R. Schrag, Jones, A. Pease, Lin,
Starr, Gunning, and Burke (1998). "The
DARPA High Performance Knowledge
Bases Project", AI Magazine, Vol. 19
No.4, Winter.

McCain and Turner (1997), "Causal Theories
of Action and Change", Proceedings of
AAAI-97, pp 460-465. Cohn, A., B. Bennet, J. Gooday, and N. Gotts

(1997). Representation and Reasoning
with Qualitative Spatial Relations about
Regions.
http://www.scs.leeds.ac.uk/spacenet/leeds
qsr.html

Schrag, R. (1999:1), email communication.

Cycorp (1998). "Features of the CycL
Language", on-line report at
http://www.cyc.com/cycl.html .

Genesereth, M., and R. Fikes (Editors) (1992).
Knowledge Interchange Format, Version
3.0 Reference Manual, Computer Science
Department, Stanford University,
Technical Report Logic-92-1, June.

Schrag, R. (1999:2). "HPKB Year 2 Crisis
Management, End-to-end Challenge
Problem Specification", Version 1.2,
February 5, Information Extraction and
Transport, Inc. and Pacific-Sierra
Research Corp. Rosslyn, VA.
http://www.iet.com/Projects/HPKB/Y2/Y2
-CM-CP.doc

Stickel, M., R. Waldinger, M. Lowry, T.
Pressburger, and I. Underwood (1994).
"Deductive Composition of Astronomical
Software from Subroutine Libraries", in
Proceedings of the Twelfth International
Conference on Automated Deduction
(CADE-12), June, 341-355.

Giunchiglia, E., and V. Lifschitz (1998). An
action language based on causal
explanation: preliminary report. In
Proceedings AAAI-98, pp. 623-630.

 Giunchiglia, E., and V. Lifschitz (1999).
"Action Languages, Temporal Action
Logics and the Situation Calculus". In
Working Notes of the IJCAI-99 Workshop
on Nonmonotonic Reasoning, Action, and
Change.

HPKB Web (1999). "HPKB Web Site",
http://projects.teknowledge.com/HPKB/

HPKB Pubs (1999). "HPKB Publications
Page",
http://projects.teknowledge.com/HPKB/
Publications.html

 15

http://www.scs.leeds.ac.uk/spacenet/leedsqsr.html
http://www.scs.leeds.ac.uk/spacenet/leedsqsr.html
http://projects.teknowledge.com/
http://www.iet.com/Projects/HPKB/Y2/Y2-CM-CP.doc
http://www.iet.com/Projects/HPKB/Y2/Y2-CM-CP.doc

 16

Does Prior Knowledge Facilitate the Development
of Knowledge-based Systems?

Paul Cohen, Vinay Chaudhri, Adam Pease, Robert Schrag
Cohen@cs.umass.edu chaudhri@ai.sri.com apease@teknowledge.com schrag@dc.iet.com
U. of Massachusetts SRI International Teknowledge Inc. IET Inc.

Abstract
One factor that affects the rate of knowledge base
construction is the availability and reuse of prior knowledge
in ontologies and domain-specific knowledge bases. This
paper reports an empirical study of reuse performed in the
first year of the High Performance Knowledge Bases
(HPKB) initiative. The study shows that some kinds of
prior knowledge help more than others, and that several
factors affect how much use is made of the knowledge.

Introduction

With current technology, trained knowledge engineers can
build knowledge bases at a rate of roughly 10,000 axioms
per person per year, or roughly five axioms/person/hour.
One factor that affects this rate is the availability and reuse
of prior knowledge in ontologies and domain-specific
knowledge bases. Until now, there have been no
systematic studies of knowledge reuse. This paper reports
an empirical study of reuse. The study was performed in
the first year of the High Performance Knowledge Bases
(HPKB) initiative sponsored by the Defense Advanced
Research Projects Agency (Cohen et al., 1998). By
comparing the efforts of two HPKB groups under different
conditions, we find that prior knowledge in the form of
ontologies does help, though many factors affect how
much it helps. This work also introduces metrics and
methods for evaluating the contribution of prior knowledge
to knowledge-based systems.

By prior knowledge we mean the knowledge one has
available in an ontology or knowledge base prior to
developing a knowledge-based system. Several large
ontologies have been developed including Cyc (citation)
LOOM (citation), <Bruce Porter’s system>, …, 1. All these
systems contain hierarchies of knowledge. At the upper
levels, one finds knowledge that is general to many
applications, such as knowledge about movement, animate
agents, space, causality, mental states, and so on. The
lower levels contain knowledge specific to domains; for
example, rules for inferring the effects of tactical military
operations. Bridging general and specific knowledge, one
finds micro theories (citation); collections of terms and

1 See also http:// … for a web site devoted to ontology-building efforts.

axioms about phenomena such as human physiology, more
general than a particular medical expert system but less
general than, say, knowledge about physical systems. In
addition to hierarchies of terms, all the ontologies cited
above contain axioms, for example, “all universities are
educational institutions”; rules, for instance, “if x is an
educational institution then x pays no taxes”; and inference
methods such as resolution or more specialized forms of
theorem-proving. Axioms and rules confer a functional
kind of meaning on the terms they contain, that is, the
meaning of a term is the things one can legitimately say
(infer) about it.

One claim of ontologists is that it is easier to build a
domain-specific knowledge base KB inside an ontology O,
or informed by O, than without O. Some of the ways that
O can help are illustrated in Figure 1. First, a term p that
you wish to add to KB might already exist in O, saving
you the trouble of adding it. Second, axioms relating to p
might already exist in O, saving you the trouble of thinking
them up and encoding them. Third, within O, p might be a
subclass of v, so you also have the benefit of axioms about
v inherited through p.

Now suppose you want to add a concept p’ to KB, and p’
is not exactly p, but is similar in some respects. For
instance, p might be part of a microtheory about
economics, and p’ might belong to a microtheory about
fluid flows, but both p and p’ represent the concept
“source.” More generally, suppose the structure of the
theory of economics in O parallels the structure of the
theory of fluids that you are trying to build in KB. Thus, a
fourth way that O can help you to build KB is to help you
structure the theory in KB. Designing the structure of
microtheories is very time consuming, so this kind of help
may be the most important of all.

mailto:Cohen@cs.umass.edu
mailto:chaudhri@ai.sri.com
mailto:apease@teknowledge.com
mailto:schrag@dc.iet.com

2. Several weeks before testing, a batch of sample
questions (SQs) was released.

ontology

p: p(x)&q(x)=>r(x)
isa
v: v(x) => w(x)

p
knowledge-
based
system

v'
p's'

s
3. On the first day of the evaluation, a batch of 110 test

questions, TQA, was released, and the Teknowledge
and SAIC systems were immediately tested. After
four days for improvements, the systems were re-
tested on TQA.

4. Batch TQB was released immediately after the retest.
The purpose of TQB, which contained questions
similar to those in TQA, was to check the generality
of the improvements made to the systems.

5. After a brief respite, a change was made to the crisis

scenario, increasing the scope of the problems that
the Teknowledge and SAIC systems would have to
solve. Several days were allowed for knowledge
entry prior to the release of a new batch of questions,
TQC, reflecting the new scope. The systems were
tested immediately.

Figure 1. Some ways an ontology O can help one build a
knowledge base KB.

Unfortunately it is difficult to assess experimentally how
the structure of O helps one build KBs with similar
structure, so we focus here on the first three ways that O
can help one build KB. 6. Four days were allowed to extend the systems to the

new crisis scenario, then the systems were re-tested
on TQC. To check the generality of these extensions,
the systems were also tested on batch TQD, which
was similar to TQC.

Metrics

Suppose one wishes to add an axiom, “If x is a state then x
maintains an army,” to KB. This axiom contains three
terms, state, maintains, and army. Suppose the first two
terms already exists in O but army does not. As two thirds
of the terms required to add the axiom to KB exist in O,
we say the support provided by O in this case is 2/3. In
general, every item i one wishes to add to KB contains n(i)
terms, k(i) of which are already in O, and support is
s(i)=k(i)/n(i). Of course, adding army to O changes O, and
the support offered by O for future axioms might be higher
because army was added. Therefore, support is indexed
by versions of the ontology: s(i,j)=k(i,j)/n(i) is the support
provided by version Oj of the ontology for concept i.

One of the methodological innovations of this experiment
was to generate all the batches of questions from a
question grammar – a set of parameterized questions –
which had been made available to the participants in the
experiment several months before testing began. Batches
SQ, TQA and TQB were generated by one grammar. The
grammar was extended to reflect the change in the crisis
scenario and used to generate batches TQC and TQD.
Figure 2 shows one of the parameterized questions (PQ53)
from the grammar. Many billions of questions could be
generated by the question grammar, so it would not have
made sense to develop systems to solve particular
questions; however, by getting the PQs early, the system
developers could limit the scope of their systems to the
subjects mentioned in the PQs (e.g., terrorist attacks,
EconomicSector, etc.)

Experiment Design

We evaluated the support provided by ontologies during a
month-long process called the Crisis Management
Challenge Problem (CMCP). The CMCP was designed by
Bob Schrag and his colleagues at IET, Inc. and PSR Corp.
Two integrated knowledge-based systems were developed
to answer questions about international crises, such as,
“What will the US response be if Iran closes the Strait of
Hormuz?” (Cohen et al., 1998). The systems were
developed by Teknowledge and SAIC. The CMCP had
several phases:

PQ53 [During/After <TimeInterval>,] what {risks, rewards}
would <InternationalAgent> face in <InternationalActionType>?

<InternationalActionType> =

{[exposure of its] {supporting,

sponsoring} <InternationalAgentType in
<InternationalAgent2>, successful terrorist attacks
against <InternationalAgent2>'s <EconomicSector>,
<InternationalActionType>, taking hostage citizens of
<InternationalAgent2>, attacking targets

1. Some months before any testing began, a crisis
scenario was released. The scenario bounded the
domain and thus the scope of the problems to be
solved by the Teknowledge and SAIC systems.

17

18

<SpatialRelationship> <InternationalAgent2> with
<Force>}

<InternationalAgentType> =

{terrorist group, dissident group, political party,
humanitarian organization}

Figure 3. A parameterized question suitable for
generating sample questions and test questions.

In the following section we analyze how prior ontology –
what was available before SQs, TQA and TQC were
released – supported the development of the Teknowledge
and SAIC systems. The former system was based on Cyc,
and much of its development was done at Cycorp, so we
call it Cyc/Tek here. The SAIC system was a collection of
component systems, none of which answered all the
questions in any test batch. The one we analyze here,
developed by SRI International, answered roughly 40 of
the 110 questions in each batch; we lack data for the other
components of the SAIC system. To compare the Cyc/Tek
and SRI systems properly we will report two sets of results
for Cyc/Tek, one for all the test questions and another for
the subset of questions answered by the SRI system.

The Cyc/Tek and SRI systems also differed in the prior
ontologies available to them. Long before testing began,
Cycorp, the developers of Cyc, released their upper
ontology (UO), which contains very general class names;
subclass relationships; instance-type relationships; relation
names and their argument types; function names, their
argument types, and the types of value they return; as well
as English documentation of every class, function and
relation; and a mapping to terms in the Sensus ontology
developed by ISI.

Whereas the SRI team had access to the UO, only,
Cyc/Tek had access to all of Cyc.

Results

The performance of the Teknowledge and SAIC integrated
systems is analyzed thoroughly in (Cohen et al., 1998).
Performance is not the focus of this paper – support
provided by ontologies is – but two results are germane
here: Both systems performed better on the sample
questions (SQs) than on TQA, and both performed better
when re-tested TQA and TQC than on the original tests
performed four days earlier. In the four days between test
and retest, significant improvements were made to the

systems. The question is, how much did the prior
ontologies help in making these improvements?

We present results for two kinds of knowledge
development. One is the development of knowledge
sufficient to encode in a formal language the test questions
in each batch, the other is the development of knowledge
to answer the test questions. Results for the former are
summarized in Table 1. The columns of the table represent
the SRI system, which was tested on roughly 40 questions
in each batch of 110; the Cyc/Tek system tested on the
same questions as the SRI system; and the Cyc/Tek system
tested on all 110 questions in each batch. Three numbers
are reported for each system: n is the number of terms
needed to encode all the questions attempted (i.e., roughly
40 or 110); k is the number of terms available in a prior
ontology; and s is the ratio of k to n. The rows of Table 1
represent the batches of questions and the help provided by
different prior ontologies. For example, the notation SQ |
UO means “the help provided by the upper ontology (UO)
in encoding the sample questions (SQ).” One can see in
this row that SRI needed 106 terms to encode roughly 40
of the sample questions, and 22 of these terms were found
in the UO, so the help provided by the UO is 22/106 =.21.
Encoding the questions in SQ required a number of terms
to be added to the ontologies, and these terms were
available to help encode questions in TQA and TQC. The
notation TQA | UO denotes the help provided by the UO
only, whereas TQA | SQ denotes the help provided by
everything encoded up through SQ. Similarly, TQC | TQA
denotes the help provided in encoding the questions in
TQC by the terms in the ontology including those defined
for SQ and TQA. Because the Cyc ontology is cumulative,
these conditions – in which terms defined for earlier test
questions are used to encode later test questions – are
reported in rows labeled “Cyc” in Table 1. For instance,
418 terms were required by Cyc/Tek to encode the 110
questions in TQA, 402 of them were available in Cyc,
including some defined when the sample questions SQ
were added. Note that SRI did not have access to Cyc, so
all rows in which questions were encoded with the help of
Cyc are marked n/a for SRI.

 SRI Cyc/Tek(40) Cyc/Tek(110)

 n k s n k s n k s

SQ | UO 104 22 .21 201 75 .37 377 126 .33

SQ | Cyc n/a n/a n/a 201 153 .76 377 280 .74

TQA | UO 104 20 .19 168 67 .4 418 126 .30

TQA | SQ 104 81 .78 n/a n/a n/a n/a n/a n/a

TQA | Cyc n/a n/a n/a 168 168 1.0 418 402 .96

TQC | UO 106 16 .15 277 81 .29 402 131 .33

19

TQC | TQA 106 82 .77 n/a n/a n/a n/a n/a n/a

TQC | Cyc n/a n/a n/a 277 270 .97 402 395 .98

Table 1. Support (s) provided by ontologies for the development
of problem solving systems to answer batches of test questions.

Cyc/Tek had higher support numbers in all conditions than
SRI, meaning they found more terms in their prior
ontologies than SRI did. However, we have broken the
data into support provided to Cyc/Tek by all of Cyc vs.
support provided by just the upper ontology, which SRI
had. For example, the first row of Table 1 shows that to
encode roughly 40 sample questions, SRI required 104
terms of which it found 22 in the UO; whereas Cyc/Tek
required 201 terms to encode the same questions, and
found 75 in the UO. Similarly, Cyc/Tek required 377
terms to encode all 110 sample questions, and found 126 in
the UO.

Cyc/Tek required more terms to encode test questions
(3.62 terms/question) than SRI (2.61 terms/question, and
got more support from prior ontologies. For example, for
Cyc/Tek to encode the roughly 40 questions in the TQA
batch that SRI encoded, they required 168 terms, all of
which existed in the Cyc ontology.

In one respect, the SRI and Cyc/Tek results are very
similar. The reuse rate of terms not in the upper ontology
– terms in Cyc or terms developed for earlier batches of
test questions – was 60%-65% for both SRI and Cyc/Tek,
across question batches TQA and TQC. This result is
shown in Table 2. The columns in this table represent the
number of terms needed to encode a test batch, N; the
number found in the upper ontology, K(UO); the number
found elsewhere, K(other); and the ratios of K(UO) and
K(other) to N. That is, the support provided by terms in the
upper ontology is s(UO)=K(UO)/N, while the support
provided by other prior ontology is s(other)=K(other)/N.
Note that s(other) ranges from .59 to .68 for test batches
TQA and TQC. In fact, the overall reuse of non-UO terms
for Cyc/Tek and SRI was .66 and .60, respectively;
whereas the overall reuse of UO terms for Cyc/Tek and
SRI was .32 and .17, respectively. Thus, much of the
difference in reuse statistics between SRI and Cyc/Tek is
due to their exploitation of the upper ontology. Said
differently, 22% of the terms SRI reused came from the
upper ontology while the figure was 33% for Cyc/Tek.

 N K(UO) K(other) S(UO) S(other)

SRI TQA 104 20 61 .19 .59

SRI TQC 106 16 66 .15 .62

Cyc/Tek TQA(40) 168 67 101 .40 .6

Cyc/Tek TQC(40) 277 81 189 .29 .68

Cyc/Tek TQA(110) 418 126 276 .30 .66

Cyc/Tek TQA(110) 402 131 264 .33 .66

Table 2. Support provided by terms in UO and terms from other
prior knowledge bases and ontologies.

In addition to encoding test questions, Cyc/Tek and SRI
developed knowledge to answer the questions. This
knowledge, called axioms generically, is composed of
terms, so we can ask how prior ontologies helped the
development of axioms. As before the relevant metric is
s(i,j)=k(i,j)/n(i), only here, n(i) denotes the number of
terms required to encode the ith axiom.

SRI provided data on how ontologies supported writing
axioms. The rows of Table 3 represent the phases of the
experiment and the source of prior ontology. The first
row, SQ | UO shows that 1703 axioms were encoded to
solve the sample questions SQ, and these axioms required
461 terms, of which 51 were in the upper ontology, UO,
for a support value of 0.11. The second row shows that in
the four days between the test and retest on batch TQA,
123 axioms were encoded, requiring 195 terms. 30 of
these terms were found in the UO. The third row shows
that 109 of the 195 terms were found in all the ontology
developed prior to the test on TQA, namely UO and SQ.
A comparison of the second and third rows shows that
109–30=79 reused terms came from SQ. The same pattern
repeats in the two remaining phases of the experiment:
After the scenario modification but before TQC, 1485
axioms were added to the SRI system. These required 583
terms of which 40 existed in the UO and 254 were found in
the UO, SQ, and TQA prior ontologies. Similarly,
between the test and retest on TQC, 215 terms were
required for 304 axioms; only 24 of these existed in the
UO, and 100 more were found in the ontologies developed
after the UO.

It is unclear why prior ontologies provided significantly
less support for encoding axioms than for encoding test
questions. In both cases the support came in the form of
terms, but why are the terms required to define axioms less

20

likely to be in a prior ontology than the terms needed for
test questions? One possibility is that test questions
include fewer terms that represent individuals (e.g.,
#$HassiMessaoud-Refinery) than do axioms, so terms in
test questions are less specific and more likely to exist in a
prior ontology than terms in axioms. We will be looking at
our data more closely to see whether this is the case.

 SRI

 Axioms n k s

SQ | UO 1703 461 51 .11

From TQA to TQA retest | UO 123 195 30 .15

From TQA to TQA retest | SQ 123 195 109 .56

From TQA retest to TQC | UO 1485 583 40 .09

From TQA retest to TQC | TQA 1485 583 254 .44

From TQC to TQC retest | UO 304 215 24 .11

From TQC to TQC retest | TQC 304 215 124 .58

Table 3: SRI measured the number of terms required to add
problem-solving axioms to their system, and the reuse of terms
from the UO and subsequent ontology efforts.

Discussion

Does prior knowledge in ontologies and domain-specific
knowledge bases facilitate the development of knowledge-
based systems? Our results suggest that the answer
depends on the kind of prior knowledge, who is using it,
and what it is used for. The HPKB upper ontology, 3000
very general concepts, was less useful than other
ontologies, including Cyc and ontologies developed
specifically for the crisis management domain. This said,
Cyc/Tek made more effective use of the upper ontology:
33% of the terms it reused came from there whereas 22%
of the terms SRI reused came from the upper ontology.
Why is this? One reason is probably that Cycorp
developed the upper ontology and was more familiar with
it than SRI. Knowledge engineers tend to define terms for
themselves if they cannot quickly find the terms in an
available ontology. Once this happens – once a term is
defined anew instead of reused – the knowledge base starts
to diverge from the available ontology, because the new
definition will rarely be identical with the prior one.
Another reason for disparity in reuse of the upper ontology
is that SRI preferred their own definitions of concepts to
the available ones. We lack the data to assess which of
these explanations accounts for most of the disparity.

As to the uses of prior knowledge, our data hint at the
possibility that prior knowledge is less useful for encoding
axioms than it is for encoding test questions.

Whereas reuse of the upper ontology depends on who is
using it, other ontologies seem to account for a roughly
constant (60% – 66%) rate of reuse, irrespective of who
developed these ontologies. For SRI, these ontologies
were just those developed for batches of questions SQ,
TQA, TQB, TQC and TQD. To be concrete, the 60% of
the terms required for TQC were defined while encoding
SQ, TQA and TQB. The picture is a bit cloudier for
Cyc/Tek because they had the Cyc ontology throughout,
and we lack the data to say whether the 66% non-UO reuse
came from terms defined for previous batches or from Cyc.

Despite this ambiguity we speculate that in the process of
building a domain-specific knowledge-based system, the
rate of reuse of terms defined earlier in the process is 60%-
70%. Whether this figure is due to a few terms being
reused very frequently or many terms being reused
moderately, we do not have the data to judge. Although
the rate of reuse of terms from very general ontologies may
be significantly lower (e.g., 15%–30%), the real advantage
of these ontologies probably comes from helping
knowledge engineers organize their knowledge bases along
sound ontological lines. However, we can offer no data
pertinent to this use of general ontologies.

Conclusion

Many questions remain. Our data are crude summaries of
reuse of terms, they do not tell us much about the work that
knowledge engineers do when they build domain-specific
knowledge bases. How long will a knowledge engineer
hunt for a relevant term or axiom in a prior ontology?
How rapidly do knowledge bases diverge from available
ontologies if knowledge engineers don’t find the terms
they need in the ontologies? By what process does a
knowledge engineer reuse not an individual term but a
larger fragment of an ontology, including axioms? How
does a very general ontology inform the design of
knowledge bases, and what factors affect whether
knowledge engineers take advantage of the ontology? Why
do prior ontologies apparently provide less support for
encoding axioms than for encoding test questions? Finally,
will the results we report here generalize to domains other
than crisis management and research groups other than SRI
and Cyc/Tek? We expect to answer some of these
questions retrospectively by analyzing other data from the
first year of the HPKB program and prospectively by
designing experiments for the second year.

21

References

Paul Cohen, Robert Schrag, Eric Jones, Adam Pease,
Albert Lin, Barbara Starr, David Gunning, and Murray
Burke. The DARPA High Performance Knowledge
Bases Project. AI Magazine, Winter, 1998. pp. 25-49

22

From Visual to Logical Representation: A GIS-
Based Sketching Tool for Reasoning about Plans

John Li, Cleo Condoravdi, Adam Pease
[jli, ccondora, apease]@teknowledge.com

Teknowledge Inc.

Abstract
Abstract: Multi-modal and heterogeneous logic reasoning
is of increasing importance within the AI community. The
GIS based ArcView COA Sketcher (ArCS) sketch and
translation tool developed under DARPA’s High
Performance Knowledge Bases program is an example of an
enabling tool towards that goal. Army Course of Action
(COA) sketches can be drawn and translated automatically
into statements in a formal logic with the tool. The
statements are inputs to a geographic reasoner as well as
systems reasoning about plans. This paper discusses the
design of the sketching tool, and issues in creating an
effective correspondence between the visual and logical
representations of a COA.

Introduction

 Multi-modal and heterogeneous logic reasoning is of
increasing importance within the AI community. Visual
presentation of information through diagrams, sketches
and charts is so ubiquitous in human communication that it
has long been desired to have automated reasoning systems
taking visual representations as inputs. More generally,
research effort has been devoted to developing logics for
diagrammatic reasoning. For example, [Fisler, 1996] has
developed a heterogeneous logic for hardware verification
of design diagrams. A visual representation has also been
used in the teaching of classical logic itself [Barwise &
Etchemendy, 1995].

 DARPA’s High Performance Knowledge Bases
(HPKB) program provided us with an excellent
opportunity for developing tools for visual inputs to
systems performing knowledge-rich symbolic reasoning.
The purpose of the HPKB program is to advance the state
of the art in knowledge representation and reasoning and
create applications incorporating advanced AI techniques
that are relevant to the military [Cohen et al 1998]. One
application of this program is to develop systems for
evaluating and critiquing operational army plans for
courses of action on the battlefield.

 Army Courses of Action (COAs) are high-level
battle plans. They describe the intended actions of friendly
troops on the battlefield on the basis of possible enemy
deployment and actions. Human planners specify COAs by
means of a sketch and a textual description in accordance
with army practice [Army, 1997].

 The sketch consists of standardized symbology
placed on a map. It presents map-based information about

the battlefield the location of friendly and enemy troops,
terrain features and obstacles, military regions and
boundaries, possible battle positions and maneuver paths
 as well as the planned tactical actions.

 The textual description describes in a controlled
English grammar the actions of the troops, their temporal
relation and their intended purpose within the overall plan.

 The COA statement and the COA sketch are in
part complementary to each other but there is also
significant overlap between them. As a result, the two parts
of the COA need to be combined through a fusion process.

 COA Sketches as Inputs to Plan Critiquers

 The process of getting from the original COA inputs
(statement and sketch) to the formal inputs needed for the
critiquing systems presents challenges that are worth some
discussion. One is that reasoning for plan evaluation relies
on qualitative concepts and relative spatial relations
between objects rather than the absolute geographical
position of objects or the geographical profile of a region.
However, it is the latter that is explicitly recorded in the
sketch. For example, a critique checking to determine
whether an action can successfully accomplish its stated
purpose to enable another action will check whether the
targets of the enabling action include all enemy troops on
the path of the enabled action. This means that the
reasoning system needs information making reference to
concepts like spatial subsumption, betweenness along a
non-cyclic path, trafficability of terrain, etc.

 This implies that a translator should pass
information about the absolute location of objects on to a
geographic reasoner that can calculate qualitative spatial
relations and estimate the trafficability of regions.
Moreover, many concepts that are important to critiquers,
such as the forward edge or the rear area of the battlefield,
although implicitly depicted in the sketch, do not
correspond to any specific symbol and need both
geographic reasoning and domain specific knowledge to be
identified with the proper region on the map.

 Our GIS based ArcView COA Sketcher (ArCS)
sketch and translation tool was, therefore, designed to
provide formal inputs to a geographic reasoner as well as
systems reasoning about plans. COA sketches can be
drawn and translated automatically into statements in a
formal logic with the tool. In what follows, we will first

mailto:apease@teknowledge.com

discuss the software environment for COA critique and
ArCS development. Then we will introduce an exemplar
COA sketch drawn with ArCS and will use it in our
discussion of the design of the translation process. Issues
in creating an effective correspondence between the visual
and logical representations of a COA are presented
afterwards.

23

Execution Environment

 We utilized Cyc [Lenat, 1995] as our knowledge
representation and inference environment for the COA
critique development. Relevant army doctrine is coded as
logical statements in MELD/CycL [Cycorp, 1998].
Instances of COA statements and sketches are translated
into MELD and imported into Cyc. Cyc is an inference
system that can directly use these inputs to answer queries
posed by the critiquer. Each COA critique was
implemented as a problem solving method (PSM) [Gil,
1996] (this could be also termed a knowledge based
procedure) and coded in Java. Each PSM made several
calls to Cyc with a knowledge base query. Subsequent
queries were created based on the results from earlier
queries posed by the PSM. The most widely used PSM for
COA critiquing could be called critique and refine. An
initial query would be posed to determine if there was a
problem of a particular sort. Further queries would zero in
on the specifics of the problem so that the answer returned
could provide the user with enough information necessary

to effect a repair.

 We utilized GeoRep [Ferguson, et al, 1999] as our
geo-spatial reasoner. GeoRep can take as inputs the
latitudes and longitudes of all objects drawn on the COA
sketch and answer location and proximity questions with
its qualitative spatial reasoning. It also provides
trafficability support. For details see [Donlon et al, 1999].

 We used the ArcView Geographic Information
System [ESRI, 1996:1] as our sketching environment. The
Avenue [ESRI, 1996:2] scripting language was used both
for handling user interaction and creating the MELD
logical statement output created from the sketch. The
sketch outputs in MELD followed the common ontology
developed for the domain and were used by GeoRep, the
Cyc-based critiquer and the critiquing systems of GMU
(built with Disciple KA shell [Tecuci et al, 1999]) and ISI
(built with the expect KA shell [Swartout & Gil, 1996]),
and UMass’s knowledge-based war gaming simulator
[Atkin et al, 1999].

Statement
Translator

ArCS
(ArcView COA Sketcher)

Critiquer

Geographic
ReasonerOntologies

Java Integration COA Environment

 COA Example

 The graphic above shows a standard army COA
drawn within ArCS. A human planner uses the ArCS tool
to depict the deployment of friendly and enemy forces, the
actions undertaken by friendly forces, the organization of
the battlefield, including the areas of responsibility for
friendly forces, and various features of the terrain. When
the planner finishes the sketch, a click of the translation
button allows thousands of logical statements to be
generated instantly. This specific COA sketch, for
instance, was translated into about 4,000 MELD
statements.

 To fulfill the drawing and translation function of
ArCS, we made TrueType fonts for composable military
symbols, and defined a mapping between the military
symbology and ArcView’s drawing functions, as well as
another mapping between the military symbology and the
MELD logical statements.

 For example, the box symbol
signifies a friendly military unit with the X
denoting that the unit has the echelon or size
of brigade. This particular unit is known as
a task organized composition unit, which means that it is
composed of subunits temporarily assigned for the purpose
of a battle or larger operation. In this case there are two
mechanized units (denoted by the squares) and one
armored unit (denoted by the triangle) that comprise the
brigade. The system knows that the next echelon smaller
than brigade is regiment so it asserts that the subunits are
regiment sized.

 The arrows in the diagram
denote actions that the units are

 COASpecificationMicrotheory).

24

supposed to undertake. The symbol denotes that the unit at
the tail of the arrow is performing a fix task against the unit
at the head of the arrow. A fix task is one in which the
object is to prevent the enemy unit from moving. This can
be done by artillery fire. In this particular case, the enemy
is further constrained by the presence of a minefield
(shown as three circles inside a vertical
rectangle) between itself and the opposing unit.

F: (genlMt BlueDivisionCOA1-1Mt
 ModernMilitaryTacticsMt).

 The COA also contains named areas
such as "Objective Slam" which
serve as the targets of actions or
zones of responsibility for particular units.
The planner indicates that the friendly
mission is to seize the objective
by drawing the circle and
arrow graphic pointing into

the area.

 The specification of the military units involved in
the COA relies on the ontology of military units developed
by [Andersen & Petersen, 1997]. Each unit has a specific
military specialty, echelon, and strength. The
relationInstanceExistsCount statements deserve further
explanation. They are based on relations that are the
MELD equivalents of frame predicates, which indicate that
the relation given as the first argument holds between the
instance given as the second argument and N instances of
the class specified in the third argument where N is the
fourth argument. This statement is equivalent to
(following

notation in [Sowa, 1999])
(∃x:arg3)(x@arg4∧arg1(arg2,x)).

 Another important class of graphics is the lines
that divide the battlefield. For example, the line, which has
two vertical bars on it in the top center of the sketch,
indicates that the area of
responsibility for the battalion
directly above it ends at the line.
The vertical lines are called phase lines and provide an
indication of the phasing of the plan. Phase lines indicate
the position of units during different phases of the plan.
The phase line acquires its full meaning when combined
with temporal information provided in the
COA statement. The vertical line which is
marked "PL Amber" at the bottom center of
the COA indicates that the line is named as
indicated and is further specified as an "LD" or Line of
Departure which denotes the point from which an attack
takes place.

Constant: BlueMechBgd1.
in Mt: BlueDivisionCOA1-1Mt.
F: (isa BlueMechBgd1
 MechanizedInfantryUnit-
MilitarySpecialty).
F: (isa BlueMechBgd1
 ArmoredUnit-MilitarySpecialty).
F: (echelonOfUnit BlueMechBgd1
 Brigade-UnitDesignation).
F: (sovereignAllegianceOfOrg BlueMechBgd1
 Blue-Side).
F: (troopStrengthOfUnit BlueMechBgd1
 RegularStatus).
F: (relationInstanceExistsCount
 subOrgs-Direct
 BlueMechBgd1
 ArmoredUnit-MilitarySpecialty
 1).
F: (relationInstanceExistsCount
 subOrgs-Direct
 BlueMechBgd1
 MechanizedUnit-MilitarySpecialty

Translation of the Symbols 2).

 We first define a context or, in Cyc terminology, a
microtheory in which all statements about the COA would
be placed. This allows knowledge about the particular
plan to be clearly differentiated from knowledge about the
domain of all COAs. Also, by virtue of inserting the COA
microtheory within the lattice of other Cyc microtheories,
it allows for reasoning to be made more efficient by
excluding inheritance from reasoning context which are
irrelevant to the COA domain. In the MELD syntax below
Constant introduces a new symbol to the system. in Mt
indicates that all assertions below it are to be made within
the given context. F indicates that a formula or logical
statement is to follow. isa states that an instance is a
member of a class. genlMt states that one microtheory
inherits the contents of another.

 The system also names the areas that the units are
placed in and have responsibility over. In the statements
following, the shape and geographic location of areas of
interest are given. While the Cyc-based reasoner does not
use these metric points directly, they are generated and
passed to the geographic reasoner which turns the metric
statements into propositional, or relative statements about
the geographic entities and passes those statements back to
the critiquer.

Constant: Loc36.
in Mt: BlueDivisionCOA1-1Mt.
F: (isa Loc36 GeographicalRegion).
F: (objectFoundInLocation BlueMechBgd1 Loc36).
F: (shape Loc36 (AbstractFn Square)).

F: (longitude (CenterFn Loc36)

(Degree-UnitOfAngularMeasure -97.5515)).
Constant: BlueDivisionCOA1-1Mt. F: (latitude (CenterFn Loc36)
in Mt: BaseKB. (Degree-UnitOfAngularMeasure 37.8412)).
F: (isa BlueDivisionCOA1-1Mt

mailto:x@arg4

25

Constant: P241.
F: (isa P241 GeographicalThing).
F: (longitude P241
(Degree-UnitOfAngularMeasure -97.5087)).

F: (latitude P241
(Degree-UnitOfAngularMeasure 37.7984)).

;; etc (similar for other points)

F: (pointsOfBorder (BorderFn Loc36)

(TheList P241 P242 P243 P244)).

 Note that a lengthy specification of the
coordinates specifying the center and the termini of the
region (P241, P242, P243, and P244) is necessary for the
geographic reasoner to recognize the shape of the region.
These specifications for the regions, as well as those for
the polylines and other geometric shapes, are the inputs to
the geographic reasoner only. The critiquing systems use
the derived results from the geographic reasoner such as
the statements about the shape and degree of trafficability
of a region given in the code below.

 Because ArCS is built on top of a geographic
information system, it is possible to overlay the sketch on
digital terrain data and to use that information for further
processing. One of the results of such processing [Donlon
et al, 1999] is to generate information about the
trafficability of regions. We can then attach to polygons
that define those regions information about their
trafficability.

Constant: COO2.
in Mt: BlueDivisionCOA1-1Mt.
F: (isa COO2 GeographicalRegion).
F: (degreeOfTrafficability COO2
 TerrainSeverelyRestricted).
F: (shape COO2 (AbstractFn Polygon)).

 The sketch tool also provides the human planner
with the ability to describe features that do not exist at the
beginning of the plan but rather come into being as the
plan unfolds, such as candidate battle positions. For
example,

Constant: BP10.
in Mt: BlueDivisionCOA1-1Mt.
F: (isa BP10 GeographicalRegion).
F: (candidateBattlePositionOfCOA
 BlueDivisionCOA1-1Mt BP10).
F: (shape BP10 (AbstractFn Polygon)).

 As discussed above, the phase lines and lines of
responsibility collectively define regions that units are
responsible for controlling at different points in time.
Temporal information is not generated from the sketch and
as a result not shown here. However, the process of
translating the statements and combining them with the

ArCS output does result in temporal information being
provided.

Constant: Loc54.
in Mt: BlueDivisionCOA1-1Mt.
F: (isa Loc54 PhaseLineBoundedArea).
F: (sectorOfResponsibility BlueMechBgd1
Loc54).
F: (hasPartAsBorder Loc54 BoundaryBtnS).

 The tasks assigned to units are also produced
from the sketch and further specified in the text.

Constant: Fix1.
in Mt: BlueDivisionCOA1-1Mt.
F: (isa Fix1 Fix-MilitaryTask).
F: (unitAssignedToTask Fix1 BlueMechBgd1).
F: (objectActedOn Fix1 RedMechRegt1).

Issues in Translation

 The representations provided above are relatively
simple. The challenge was to define representations that
could be easily and unambiguously generated by the sketch
tool and yet still be powerful enough to represent all the
information of interest and be merged successfully with the
more complicated representations generated from parsing
the controlled English COA text.

 An additional complexity existed with regards to
the domain. Because military COAs have been intended
for understanding and use by humans, they contain
considerable ambiguity and flexibility. For example, the
presence of a unit at a particular point on a COA sketch
does not necessarily mean that the unit will in fact be
located at that precise point at any time during the battle.
It is merely a candidate position that is consistent with the
intent and responsibilities of the planner. The challenge
was to provide the utility of such intended flexibility while
not complicating the system design. In the end, this was
handled by ensuring that the reasoning that operated on the
sketch outputs was not sensitive to the exact positions. In
this sense, the critiquing rules embodied a tolerance for
imprecision. Accomplishing this required incorporating
geographic reasoning which asserted qualitative statements
about spatial relations as described earlier.

 A similar consideration was that the units
themselves are intended as prototypes or descriptions of
units rather than references to real world units. For
example, by placing a mechanized division symbol on the
map, the human planner is not asserting that a particular
division such as the 5th Mechanized division will be
positioned at that location but rather that any available
mechanized division can play that role in the plan. There
again, the critiquing rules needed to take this into account.

26

Related Work

 The nuSketch tool of Northwestern University
[Forbus et al, 2000], under development during the HPKB
program, has been intended to have a similar functionality
to ArCS. It uses in addition a combination of speech and
gesture to specify COA elements in order to free
commanders from mouse and menus. Important
differences include the fact that the ArCS system used a
commercial geographic information system as its base.

Conclusion

 The work described here was part of the effort to
provide formal inputs to the various reasoning systems. We
created a rich sketching tool that allowed a user to specify
a battlefield plan in standard Army symbology. That
symbology was converted to a logical representation,
which combined with statement translation, could be
effectively employed for reasoning about the suitability,
feasibility and correctness of a military Course of Action.

Acknowledgements

 We would like to acknowledge our DARPA
sponsor, Murray Burke for supporting this effort. We
would also like to acknowledge inspiration for,
collaboration with and testing of ArCS from Ken Forbus
and his team at Northwestern University. We would like to
acknowledge Henry Gunthardt, SAIC, for his contribution
in coding a drawing function.

References

Andersen, W. & Petersen, B. 1997, "Military Units
Ontology", unpublished report.

Army field manual, FM 101-5. Headquarters, Department
of the Army, Washington, DC, 31 May 1997.

 Atkin, Marc, David L. Westbrook and Paul R. Cohen.
1999. Capture the Flag: Military Simulation Meets
Computer Games. AAAI-99 Spring Symposium on AI and
Computer Games.

 Barwise, J. and Etchemendy, J. 1995, Hyperproof.
Stanford CSLI Publications. Cambridge University Press.

Cohen, P., Robert Schrag, Eric Jones, Adam Pease, Albert Lin, Barbara Starr, David

Gunning, and Murray Burke, 1998. The DARPA High Performance Knowledge Bases

Project. AI Magazine, Winter, 1998. pp. 25-49.

Cycorp, 1998, "Features of the CycL Language", on-line
report at http://www.cyc.com/cycl.html .

 Donlon, J.J. and Forbus, K.D. 1999, Using a Geographic
Information System for Qualitative Spatial Reasoning
about Trafficability. Proceedings of the Qualitative
Reasoning Workshop. Loch Awe, Scotland.

ESRI, 1996:1, "ArcView GIS: Using ArcView" ESRI
software documentation, Redlands, CA.

ESRI, 1996:2, "Avenue: Using Avenue", ESRI software
documentation, Redlands, CA.

Ferguson, R.W. and Forbus, K.D. 1999, GeoRep: A Flexible Tool for Spatial

Representation of Line Drawings. Proceedings of the Qualitative Reasoning Workshop.

Loch Awe, Scotland..

 Fisler, K. 1996, A Unified Approach to Hardware
Verification Through a Heterogeneous Logic of Design
Diagrams. PhD Dissertation. Indiana University
Department of Computer Science, August.

Forbus, K., Feguson, R., Usher, J., 2000, "Toward a
Computational Model of Sketching", in preparation for
AAAI-2000.

Gil, Y., and Melz, E., 1996, "Explicit Representations of
Problem-Solving Strategies to Support Knowledge
Acquisition". Proceedings of the Thirteen National
Conference on Artificial Intelligence (AAAI-96), Portland,
OR, August 4-8, 1996.

Lenat, D., 1995, "Cyc: A Large-Scale Investment in
Knowledge Infrastructure." Communications of the ACM
38, no. 11, November.

Sowa, 1999, "Knowledge Representation: Logical,
Philosophical and Computational Foundations",
Brooks/Cole pub.

http://www.cyc.com/cycl.html

27

Swartout, W. and Gil, Y., 1996. "EXPECT: A User-
Centered Environment for the Development and
Adaptation of Knowledge-Based Planning Aids". In
Advanced Planning Technology: Technological
Achievements of the ARPA/Rome Laboratory Planning
Initiative, ed. Austin Tate. Menlo Park, Calif.: AAAI
Press.

Tecuci G., Boicu M., Wright K., Lee S.W., Marcu D., and
Bowman M., 1999, "An Integrated Shell and Methodology
for Rapid Development of Knowledge-Based Agents," in
Proceedings of the Sixteenth National Conference on
Artificial Intelligence (AAAI-99), July 18-22, Orlando,
Florida, AAAI Press, Menlo Park, CA.

28

Using Large Ontologies to Enable Semantic
Interoperability of Problem Solvers

Adam Pease
Teknowledge

apease@teknowledge.com

Abstract
A key to delivering a scalable solution for the integration of
knowledge based problem solvers is the notion of semantic
integration. We show how semantic integration using a
very large knowledge base provides particular leverage in
achieving a robust solution. We describe some existing
approaches to this problem and then detail our solution
applied to several knowledge based problem solvers. We
conclude with lessons learned and directions for future
research.

Introduction
 In this paper, we will explain the notion of senatic
integration. We will show this in the context of our work
on the DARPA High Performance Knowledge Bases
(HPKB) program. The goals of HPKB are to advance the
state of the art in knowledge based problem solving,
knowledge representation, reasoning and knowledge
capture.

The HPKB program participants are constituted into three
groups: Challenge Problem Developers, Integrators and
Technology Developers. The Challenge Problem
Developers are charged with creating test problems which
address tasks which are relevant to DARPA's military
customers and are amendable to a knowledge based
solution. The Challenge Problems (CPs) must balance
several objectives including creating a problem which is
solvable and yet challenging enough such that it forces the
application and development of new technologies.
Integrators are charged with solving the CPs and applying
whatever technologies are needed to accomplish that task.
Technology developers are charged with supplying the
integrators with the component technology solutions.

In our role as an integrator we are tasked in part with
creating an integrated architecture which allows domain
specific problem solvers to work together and contribute to
an overall knowledge based solution. Our basis for this
integration is the use of a single very large knowledge
base. In this first year of the program we have successfully
integrated several problem solvers using the Cyc system
(Lenat, 1995; Lenat & Guha, 1990).

Background
Software integration is a difficult problem. Systems that
were not designed to work together always have a host of
different assumptions.

We will divide integration into three layers of connectivity
issues. The first is what we will call transport layer issues.
This concerns the mechanisms of how to get the bits from
one process or machine to another. Solutions include
sockets, RMI and CORBA. Another set of issues are found
at what we'll call the syntax layer. This concerns how to
convert number formats, "syntactic sugar" or the labels of
data. The more challenging task is to deal with what we
will call semantic connectivity. The integrator must
understand the meaning of each data element.
Considerable related work has occurred in the database
community on the issue of integrating databases at the
semantic level [Wiederhold, 1996].

The current state of the practice in software integration
consists largely of interfacing pairs of systems as needed.
We term this pairwise integration. It is a problem because
pairwise integration doesn't scale up. Unanticipated uses
are hard to cover later. Chains of integrated systems
evolve at best into stovepipe systems. Each integration is
only as general as it needs to be to solve the problem at
hand.

Some success has been achieved in low level integration
and reuse. Systems which use the same scientific
subroutine libraries or graphics packages at least are forced
into similar representational choices for low level data.
DARPA has also invested in early efforts to create large
reuse libraries which can assist in integrating large systems
at higher levels (Carrico, 1997). Considerable work has
gone into expressing a generic semantics of plans in an
object oriented format (Pease & Carrico, 1997; Pease &
Carrico, 1997:2). Additional work in applying that generic
semantics to domain specific applications is promising
(Pease & Albericci, 1998).

The development of ontologies for integrating
manufacturing planning applications (Tate, 1998) and
workflow (Lee, 1996) have also been ongoing.

Another option for semantic integration is to perform
software mediation (Park et al, 1997). This could be seen
as a variant on pairwise integration, but because integration
is done by knowledge based means, there is an expression

of the explicit semantics of the conversion. This renders
the effort more reusable.

29

Personnel at Kestrel Institute have been successful at
defining formal specifications for data and using those
theories to integrate formally specified software [Srinivas
& Jullig, 1995]. In addition, personnel at Cycorp have
successfully applied Cyc to the integration of multiple
databases.

The Solution
 We used a large general purpose knowledge base (Cyc) to
link problem solver input and output to the semantic
concepts the input and output denote. We augmented the
knowledge base with domain or problem specific
knowledge to support each specific problem solver. We
used knowledge base axioms to create a declarative
specification of how problem solver concepts map onto the
knowledge base. This approach will now be described for
several problem solvers.

Network Flow Problem Solver
One of the HPKB challenge problems can be broadly
characterized as providing a battlefield commander with a
knowledge level analysis of the characteristics of the
battlefield. One element of this is determining how and to
what extent goods and personnel can be transported from
one location to another. To solve this problem we
integrated a Network Flow Problem Solver (NFPS)
supplied by personnel at Kestrel Institute.

In the first application of the problem solver we needed to
supply a set of roads and the cities they connect and the
carrying capacities of the roads in number of vehicles per
hour. Note that in this example we were not concerned
with sophisticated traffic flow estimation which includes
local factors such as temporary backups and congestion.
After processing, we wanted the output to be a list of the
actual capacities of each road given that each exists as part
of a total system. Figure 1 shows an example with
capacities on each link. A is given as an infinite source
and E is an infinite sink.

Figure 1 - Network Capacities

Figure 2 shows the same network with the situated
capacities on each link. This graph reflects the fact that the
only links to node E are bottlenecks. Therefore, even

though link B-F can carry 80 units per time period, the

actual capacity is limited by the link F-E.

A B

C F GD E

00

0

20

20

0 2020

20

Figure 2 - Situated Capacities

Note that the NFPS has no knowledge of roads or vehicles,
only abstract notions of nodes, arcs, capacities and situated
capacities. Our next step was to link these abstract notions
with concrete notions of roads and vehicles.

Cycorp was already in the process of creating a detailed
abstract theory of networks and had already created
concepts for roads, vehicles and the flow of traffic. A
crucial concept which was not present at first was the
notion of a situated capacity as described above..

Our next step in integration was to create a system
executive and GUI which allowed user to enter and
visualize road information, transformed the road
information into input for the NFPS, retrieved the output
from the NFPS and then made assertions to the Cyc KB
based on that output.

Figure 3 shows the output of NFPS after processing by the
system executive. The statements are sent to Cyc. Ellipses
denote repetition of the same type of statement for all the
nodes or arcs in the network. #$isa is the Cyc instance-of
relationship in which an individual is declared to be a

member of a class.

(#$isa #$Network1
#$NetworkFlowSystem-Bounded)

(#$flowTypeOfSystem #$Network1
#$carPerHour)

(#$isa #$Arc1 #$Path-Simple)
…
(#$linkFromToInSystem #$Arc1

#$Node1
#$Node2
#$Network1)

…
(#$equals (#$LocalLinkFlowCapacityFn

#$Arc1 #$Network1)
 40))
…
(#$equals (#$SituatedLinkFlowCapacityFn

#$Arc1 #$Network1)
20)

…

A B

C F GD E

8030

40

80

40

60 2020

40

Figure 3 - NFPS output to Cyc

The workarounds challenge problem is another part of the
overall battlespace problem for HPKB. It addresses the
task of finding engineering workarounds for a disrupted
transportation network. When confronted with a damaged
bridge or road, military engineers must find repair
solutions which address the capabilities of the vehicles
which need to pass, the available engineering assets, and
the characteristics of the terrain and damaged
transportation infrastructure.

A block diagram of the entire system is shown in Figure 4.

NFPS

System
Executive

Cyc

Road
Network

Road
Network

Situated
Flows

CycL
Assertions

User
This problem was posed by the Challenge Problem
Developers as a database which characterizes the damaged
infrastructure, engineering assets and terrain. Our
integration task was to transform that database into a set of
assertions to a knowledge base and to link that to
knowledge based workaround reasoner which is built in
Cyc. That reasoner then performs workarounds problem
solving to recommend a solution.

Figure 4 - Network Flow Problem Solver
block diagram

The database has several records which are utilized in
specifying the current problem (from [Jones, 1998]): Dynamical Recognizers

The central thesis of this technology development task is
that representations of dynamics are the foundation for
knowledge level coding of verbs (Cohen, 1998). While the
first iterations of the challenge problem do not truly stress
this technology, an initial integration provided practical
feedback on its eventual application as part of a
sophisticated knowledge based system.

1. Unit. A military unit with its nominal and
actual properties

2. Vehicle-Of. Assigns vehicle counts to Units
(by type of vehicle)

3. Equipment-Of. Assigns equipment counts to
Units (by equipment type & vehicle type)

4. Unit-Of. Assigns specific Units as parts of other
Unit The battlespace challenge problem provides a large data set

describing the movements of battlefield entities over a
several hour period. The first level of understanding the
significance of the data is to classify the vehicles and
battlefield sites based the movement data. We integrated
several recognizers that use statistical pattern matching to
identify patterns in the data. Each recognizer identifies one

type
locat

5. Site. A geographically located militarily-
relevant place

6. Site-Point. A point that is part of the
definition of site geometry

7. Site-Part. Assigns specific Features/Sub-
Sites to some Site

8. Site-Attrib. Free-form attributes for Sites
9. Damage. Specific degradation of some

Site/Feature
10. Damage-Attrib. Free-form attributes for Feature-

Damage
The workarounds problem solver first maps these database
records into concepts in the knowledge base. It then poses
hypothetical actions to Cyc for a determination of whether
the actors in the problem are capable of the actions.

The
partic

Fig

W

(#$latitude #$Refueling34

 (#$Degrees 54))
(#$longitude #$Refueling34

 (#$Degrees 25))
(#$after

(#$StartFn #$Refueling34
(#$DayFn 14

(#$MonthFn #$February
(#$YearFn 1996)))))
of physical battlefield location. Two of these
ions are refueling stations and command posts.

Actions may need to be decomposed or enabled by the
results of other actions. A block diagram of the system is
given in Figure 6.

statements in Figure 5 assert the location of a
ular site and the time at which its existance began.

ure 5 - Sample Site Recognizer Assertions

orkarounds Inputs

30

Figure 7 - Full Battlespace System System
Executive

Translator

Cyc

Input
File

Output
File

CycL
Assertions

CycL
Queries

Result
List

Conclusion

In this paper we have attempted to show the process of
achieving semantic integration by describing the
integration of several problem solvers. We have shown
how these problem solvers are specialized for a particular
problem. We have alluded to the benefits provided by our
integration approach over a more conventional pairwise
integration.

Figure 6 - Workarounds Problem Solver

Acknowledgements
Future Work

Thanks first to Doug Lenat for his years of work in leading
the development of Cyc, without which, our integration
effort would not be possible. Thanks to Fritz Lehmann and
Ming Xu at Cycorp for creating the network axioms used
with NFPS, to Cleo Condoravdi and John Li at
Teknowledge for their excellent work on integration, Paul
Cohen and his group at UMass for their help in integrating
the dynamical recognizers, and Lee Blaine and John Anton
at Kestrel for their help in integrating NFPS. Thanks also
to Dave Gunning, the DARPA HPKB program manager
for creating and supporting the program which made this
work possible.

The real payoff in semantic integration will come in later
phases of this project when each of the systems described
above are linked into a single tool suite for battlespace
problem solving. Before this paper is in print we will have
received several more products to be integrated. Among
them are tools for terrain analysis, trafficability analysis
and route finding. We will also be integrating a
commercial Geographic Information System (GIS).

The terrain analysis tool will examine terrain information
supplied by the GIS and produce a set of polygonal regions
which are labeled as to their characteristics relative to
movement actions. This analysis is independent of vehicle
type or other factors in the situation. References

Carrico, T., (1997) Object Model Working Group,
Command and Control Schema, Revised Draft, Version
0.5.3. Unpublished report.

The trafficability analysis tool will relate the results of the
terrain analysis tool to the specific situation given in the
challenge problem. It will provide estimates of movement
costs both in time and resources used for specific vehicles,
combat and weather conditions. Cohen, Paul R. (1998). Dynamic Maps as Representations

of Verbs. Submitted to ECAI-98.
The route finding tool will work with the outputs from the
trafficability tool. It looks at the list of movement costs as
an abstract graph and finds a set of the best paths through
the network with regards to those costs. Those paths can
then be added to the transportation network which is the
input to the Network Flow Problem Solver described
previously.

Jones, E., (1998), "Formalized Intelligence Report
Ensemble (FIRE) & Intelligence Stream Encoding (ISE)",
Alphatech memo.

Lee et al, (1996) The PIF Process Interchange and
Framework Version 1.1, Jintae Lee (editor) Micheal
Grunninger, Yan Jin, Thomas Malone, Austin Tate, Gregg
Yost and other members of the PIF Working Group,
published as MIT Center for Coordination Science,
Working Paper #194, 1996. Available via
http://soa.cba.hawaii.edu/pif/

While the flow of information for these tools is relatively
sequential, the outputs of each are relevant for the
workarounds problem solver. By virtue of having
integrated each tool with the Cyc KB, there will be no need
to have a separate integration with the workarounds
problem solver. The integration will already have been
done.

Lenat, D. and Guha R., (1990) Building Large Knowledge
Based Systems. Reading, Massachusetts: Addison Wesley.

Lenat, D. (1995) Artificial Intelligence. Scientific
American, September.

GIS Terrain
Analysis

Trafficability
Analysis

Route
Finding

Network
Flow

Cyc

Java executive

Work-
around

Reasoner

Workarounds
executive

Park, J., Gennari, J., & Musen, M., (1997). Mappings for
Reuse in Knowledge-based Systems. Stanford Section on
Medical Informatics technical report SMI-97-0697.

Pease, A., & Albericci, D., (1998). The Warplan,
Teknowledge, Palo Alto, CA, March 13.

31

http://soa.cba.hawaii.edu/pif/

32

Pease, A. & Carrico, T. (1997). “The JTF ATD Core Plan
Representation: Request for Comment”. Armstrong Lab:
AL/HR-TP-96-9631.

Pease, A. & Carrico, T. (1997). “The JTF ATD Core Plan
Representation: A Progress Report”, Proceedings of the
AAAI 1997 Spring Symposium on Ontological
Engineering.

Srinivas, Y. & Jullig, R., (1995) Specware(TM): Formal
Support for Composing Software, Proceedings of the
Conference on Mathematics of Program Construction,
Kloster Irsee, Germany, July.

Tate, A. (1998), "Roots of SPAR - Shared Planning and
Activity Representation", to appear in Knowledge
Engineering Review, Special Issue on Ontologies,
Cambridge University Press.

Wiederhold, G. (ed.) (1996): Intelligent Integration of
Information; Kluwer Academic Publishers, Boston MA,
July 1996.

References
Cohen, P., Chaudhri, V., Pease A., and Schrag, R. (1999), Does Prior Knowledge Facilitate the

Development of Knowledge Based Systems, In Proceedings of the Sixteenth National
Conference on Artificial Intelligence (AAAI-1999). Menlo Park, Calif.: AAAI Press.

Cohen, P., Schrag, R., Jones, E., Pease, A., Lin, A., Starr, B., Gunning, D., and Burke, M. (1998),
The DARPA High Performance Knowledge Bases Project, AI Magazine, Vol. 19 No.4, Winter.

Ford, L. and Fulkerson. D., (1956). Maximal Flow Through a Network. Canadian Journal of
Mathematics, 8:399-404.

Li, J., Condoravdi, C., and Pease, A., (2000), From Visual to Logical Representation: A GIS-Based
Sketching Tool for Reasoning about Plans, Teknowledge Technical report, January 9.

Pease, A., Chaudhri, V., Lehmann, F., and Farquhar, A., (2000), Practical Knowledge
Representation and the DARPA High Performance Knowledge Bases Project, In A. Cohn, F.
Giunchiglia, and B. Selman, editors, KR-2000: Proceedings of the Conference on Knowledge
Representation and Reasoning. Breckenridge, CO, USA, 12-15 April 2000, San Mateo, CA,
2000. Morgan Kaufmann.

Pease, A., Liuzzi, R., & Gunning, D., (2001), Knowledge Bases, in Encylopedia of Software
Engineering, Second Edition, ed. J Marciniak, Wiley & Sons, NY.

Pease, A., Niles, I., (2002), IEEE Standard Upper Ontology: A Progress Report, Knowledge
Engineering Review, to appear.

 33

http://projects.teknowledge.com/HPKB/Publications/cohen-aaai99.ps
http://projects.teknowledge.com/HPKB/Publications/cohen-aaai99.ps
http://projects.teknowledge.com/HPKB/Publications/AImag.pdf
http://projects.teknowledge.com/HPKB/Publications/AAAI-GIS.ps
http://projects.teknowledge.com/HPKB/Publications/AAAI-GIS.ps
http://projects.teknowledge.com/HPKB/Publications/KR-195.ps
http://projects.teknowledge.com/HPKB/Publications/KR-195.ps
http://projects.teknowledge.com/HPKB/Publications/Wiley.ps

	Accomplishments in 1997
	Accomplishments in 1998
	Accomplishments in 1999
	Practical Knowledge Representation and the DARPA High Performance Knowledge Bases Project
	
	Acknowledgments
	References

	Does Prior Knowledge Facilitate the Development of Knowledge-based Systems?
	From Visual to Logical Representation: A GIS-Based Sketching Tool for Reasoning about Plans
	Using Large Ontologies to Enable Semantic Interoperability of Problem Solvers
	References

